§5.4 Instantons
Consider the path integral on a space with Euclidean metric (Wick rotate otherwise)
\rightarrow have to find local minima of action and evaluate quantum fluctuations around them
\rightarrow consider su(2) gauge the ry on Euclidean \mathbb{R}^{4}
\rightarrow local minima of

$$
S[A]=\int d^{4} x \frac{1}{2 g^{2}} \operatorname{tr} F_{\mu v} F^{\mu \nu}=-\frac{1}{2} \int \operatorname{tr}\left(F_{\wedge *} F\right)(1)
$$

are known as "instantons" eq. of motion from (1): $D_{\mu} F_{m \nu}=\partial_{\mu} F_{\mu \nu}+\left[A_{\mu}, E_{c}\right]$
\rightarrow given by configurations where

$$
A_{\mu} \rightarrow u(x)^{-1} \partial_{\mu} U(x) \quad \text { as } \quad|x| \rightarrow \infty \quad \text { (2) }
$$

because

$$
\begin{aligned}
& \text { :cause } \\
& \begin{aligned}
F_{\mu \nu} \rightarrow & \partial_{\mu}
\end{aligned} {\left[u^{-1} \partial_{\nu} u\right]-\partial_{\nu}\left[u^{-1} \partial_{\mu} u\right] } \\
&+\left[u^{-1} \partial_{\mu} u, u^{-1} \partial_{\nu} u\right] \\
&=\left(\partial_{\mu} u^{-1}\right)\left(\partial_{\nu} u\right)-\left(\partial_{\nu} u^{-1}\right)\left(\partial_{\mu} u\right) \\
&+\left(-\left(\partial_{\mu} u^{-1}\right) \partial_{\nu} u+\left(\partial_{\nu} u^{-1}\right) \partial_{\mu} u\right) \\
&= 0
\end{aligned}
$$

The (cut-) self-dual solution
Let us consider the inequality

$$
\begin{equation*}
\int d^{4} x \operatorname{tr}\left(F_{\mu \nu} \mp^{*} F_{\mu \nu}\right)^{2} \geqslant 0 \tag{*}
\end{equation*}
$$

\rightarrow saturated if

$$
\begin{equation*}
F_{\mu v}= \pm * F_{\mu v} \tag{3}
\end{equation*}
$$

where $* F_{\text {mu }}=\frac{1}{2} E_{\text {uvap }} F_{\lambda \rho}$ in
Euclidean space
Then

$$
\begin{aligned}
& \text { Then } D_{\mu} * F_{\mu \nu}=\partial_{\mu} * F_{\mu \nu}+\left[A_{m}, * F_{\mu v}\right] \\
& =\frac{1}{2} \sum_{\mu v \lambda \rho}(2 \partial_{\mu} \partial_{\lambda} A_{\rho}+\underbrace{\partial_{\mu}\left[A_{\lambda} A_{\rho}\right]}_{=-\left[\partial_{\rho} A_{\lambda}, A_{\mu}\right]}+2\left[A_{\mu}, \partial_{\lambda} A_{\rho}\right] \\
& + \\
& \left.\left.\quad-\left[A_{\mu},\left[A_{\lambda}, A_{\rho}\right]\right]\right) A_{\lambda} A_{\rho}\right] \\
& =0
\end{aligned}
$$

$\xrightarrow{(3)} D_{\mu} F_{\mu \nu}= \pm D_{\mu} * F_{\mu v}=0$ eqs. of motion are satisfied!
Now use

$$
\begin{aligned}
& S[A]=\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr} F_{\mu \nu} F^{\mu \nu} \\
& \\
& =\frac{1}{4 g^{2}} \int d^{4} x \operatorname{tr}\left(F_{\mu \nu} \neq F^{\mu \nu}\right)^{2} \pm 2 \operatorname{tr} F_{\mu \nu} * F^{\mu \nu} \\
& \quad(*) \pm \frac{1}{2 g^{2}} \int d^{3} x \partial_{\mu}\left(\partial_{\nu} F_{\Delta \sigma}+\frac{2}{3} A_{\nu} A_{\Delta} A_{\sigma}\right) \Sigma^{\mu \nu \rho \sigma}
\end{aligned}
$$

Solution (3) makes the $Y M$-action to satisfy inequality \rightarrow surface term (will see is topological)
in diff. form notation:

$$
\begin{aligned}
& \text { diff. form notation: } \\
& S_{Y M}[f]=-\frac{1}{2} \int_{M} \operatorname{tr}(7 \wedge * F) \stackrel{(3)}{=} \mp \frac{1}{2} \int_{M} \operatorname{tr}(7 \wedge 7) \\
& \text { of action): }
\end{aligned}
$$

impose eq. (2) (finiteness of action):

$$
U: S_{R=L}^{3} \rightarrow \operatorname{su}(2)
$$

classified by $\pi_{3}(\operatorname{su}(2)) \cong \mathbb{Z}$
\rightarrow compactify \mathbb{R}^{4} by adding $\{\infty\} \rightarrow S^{4}$ and cover by charts

$$
\begin{aligned}
& u_{N}=\left\{x \in \mathbb{R}^{4}| | x \mid \leqslant L+\varepsilon\right\} \\
& u_{s}=\left\{x \in \mathbb{R}^{4}| | x \mid \geqslant L-\varepsilon\right\}
\end{aligned}
$$

\rightarrow choose $A_{s}(x)=0, x \in U_{s}$
then for $x \in U_{N} \cap U_{S}$:

$$
\begin{aligned}
& A_{N}=t_{N S}^{-1} A_{S} t_{N S}+t_{N S}^{-1} d t_{N S}=t_{N S}^{-1} d t_{N S} \\
\rightarrow & U=t_{N S}: S^{3} \rightarrow \operatorname{SU}(2)
\end{aligned}
$$

Let us compute the degree of this map!

Note that $s u(2)=S^{3}$ since

$$
\begin{aligned}
& t^{4} \mathbb{1}_{2}+i t^{k} \sigma_{k} \in \operatorname{su}(2) \Leftrightarrow \vec{t}^{2}+\left(t^{4}\right)^{2}=1 \\
\rightarrow & \pi_{3}(\operatorname{su}(2)) \simeq \pi_{3}\left(s^{3}\right)=\mathbb{Z}
\end{aligned}
$$

We have
i) The constant map

$$
u_{0}: x \in S^{3} \longmapsto \mathbb{1}_{2} \in \operatorname{su}(2)
$$

\rightarrow belongs to $0 \in T_{3}(S u(2))$ (no winding)
ii) The "identity" map

$$
u_{1}: x \mapsto \frac{1}{r}\left[x^{4} \frac{1}{2}+i x^{k} \theta_{k}\right], \quad r^{2}=\vec{x}^{2}+\left(x^{4}\right)^{2}
$$

defines the class $1 \in \pi_{3}(s u(2))$
iii) The map

$$
u_{n}:=\left(u_{1}\right)^{n}: x \mapsto r^{-n}\left[x^{4} \mathbb{1}_{2}+i x^{\kappa} \sigma_{k}\right]^{n}
$$

defines class $n \in \pi_{3}$ (su(2))
Let us now evaluate the surface term given in (4):
note that $d \operatorname{tr} F \wedge F=\operatorname{tr}[d F \wedge F+F \wedge d F]$

$$
=\operatorname{tr}[-[A, F] \wedge F-F \wedge[A, F]]=0
$$

where we used $D F=d F+[x, F]=0$

$$
\longrightarrow t \mathcal{F}^{2} \text { is locally exact: }
$$

$$
\operatorname{tr} F^{2}=d K
$$

Mathematically: $\quad \operatorname{tr} F^{2}=C h_{2}$
(second Chen character) and k is "Chern-Simons" form
Zemmal:
The 3 -form K is given by

$$
K=\operatorname{tr}\left[A \wedge d A+\frac{2}{3} A^{3}\right]
$$

Proof:

$$
\begin{aligned}
& d k=\operatorname{tr}\left[(d t)^{2}+\frac{2}{3}\left(d t t^{2}-t d t t+t^{2} d t\right)\right] \\
& =\operatorname{tr}\left[\left(F-A^{2}\right)\left(F-A^{2}\right)\right. \\
& \left.+\frac{2}{3}\left(\left(7-A^{2}\right) A^{2}-x\left(7-A^{2}\right) A+A^{2}\left(7-x^{2}\right)\right)\right] \\
& =\operatorname{tr}\left[T^{2}-A^{2} F-T A^{2}+A^{4}\right. \\
& \left.+\frac{2}{3}\left(F A^{2}-A F A+A^{2} F-A^{4}\right)\right]
\end{aligned}
$$

note that $\operatorname{tr} A^{4}=0, \operatorname{tr} A T A=-\operatorname{tr} A^{2} F=-\operatorname{tr} F A^{2}$
(use cyclicity of trace and anti-commutativity of $d x^{\mu}$)

$$
\rightarrow d k=\operatorname{tr} \mathcal{F}^{2}
$$

Lem 2:
Let of be the gauge potential of an instanton. Then

$$
\int_{S^{4}} \operatorname{tr} \mathcal{F}^{2}=-\frac{1}{3} \int_{S^{3}} \operatorname{tr} d^{3}
$$

Proof:
From Stokes's theorem, we find that

$$
\int_{U_{N}} \operatorname{tr} \mathcal{F}^{2}=\int_{U_{N}} d K=\int_{S^{3}} K
$$

where we used $S^{3}=\partial U_{N}$. We have

$$
\begin{aligned}
& \left.F\right|_{S_{R=L}^{3}}=0 \\
& \rightarrow K=\operatorname{tr}\left[A d A+\frac{2}{3} A^{3}\right]=\operatorname{tr}\left[A\left(F-A^{2}\right)+\frac{2}{3} A^{3}\right] \\
& =-\frac{1}{3} \operatorname{tr} A^{3} \\
& \text { giving } \int_{U_{N}} \operatorname{tr} \mathcal{F}^{2}=\int_{S^{4}} \operatorname{tr} \mathcal{F}^{2}=-\frac{1}{3} \int_{S^{3}} \operatorname{tr} A^{3}
\end{aligned}
$$

where we used $A_{S}=0$
Note: under gange tres.

$$
\operatorname{tr} \mathcal{F}^{2} \longrightarrow \operatorname{tr}\left[U^{-1} \mathcal{F}^{2} u\right]=\operatorname{tr} \mathcal{F}^{2}
$$

We have the following:
i) For $U_{0}(x)=\mathbb{1} \in \operatorname{su}(2) \rightarrow A=0$ on S^{3}

$$
\rightarrow \int_{S^{4}} \operatorname{tr} F^{2}=-\frac{1}{3} \int_{S^{3}} x^{3}=0
$$

ii) Consider gauge potential with boundary values on S^{3} given by

$$
A=\frac{1}{r}\left(x^{4}-i x^{k} \sigma_{l}\right) d\left(\frac{1}{r}\left(x^{4}+i x^{l} \sigma_{l}\right)\right)
$$

evaluating at the north pole $\left(x^{4}, 1, x=0\right)$ gives $b=i \sigma_{k} d x^{k}$

$$
\begin{aligned}
\rightarrow \operatorname{tr} A^{3} & =i^{3} \operatorname{tr}\left[\sigma_{i} \sigma_{j} \cdot \sigma_{k}\right] d x^{i} \wedge d x^{j} \wedge d x^{k} \\
& =2 \sum_{i j k} d x^{i} \wedge d x^{i} \wedge d x^{k} \\
& =12 \underbrace{d x^{\prime} \wedge d x^{2} \wedge d x^{3}}
\end{aligned}
$$

$=: \omega$ volume form (at north pole)

$$
\rightarrow \int_{S^{3}} \operatorname{tr} A^{3}=12 \int_{S^{3}} \omega=12\left(2 \pi^{2}\right)=24 \pi^{2}
$$

where $2 \pi^{2}$ is the area of the unit sphere S^{3}

$$
\rightarrow-\frac{1}{8 \pi^{2}} \int_{S^{3}} \operatorname{tr} F^{2}=\frac{1}{24 \pi^{2}} \int_{S^{3}} \operatorname{tr} t^{3}=1
$$

iii) Next, consider the map $u_{n}: S^{3} \operatorname{su(2)}$ given by

$$
x \mapsto r^{-n}\left[x^{4} \mathbb{1}_{2}+i x^{k} \sigma_{k}\right]^{n}
$$

we show that $U_{2}=U_{1} U_{1}$ has winding number 2 :
Let s^{3} be covered by $U_{N}^{(3)}$ and $U_{s}^{(3)}$ for $U_{1}: s^{3} \rightarrow \operatorname{SU}(2)$ deform to obtain

$$
\begin{aligned}
U_{1 N}(x) & =1 \text { for } x \in U_{s}^{(3)} \\
\text { or } U_{1 S}(x) & =1 \text { for } x \in U_{N}^{(3)} \\
\rightarrow U_{2}^{\prime}(x) & = \begin{cases}U_{1 N}(x) & x \in U_{N}^{(3)} \\
U_{15}(x) & x \in U_{S}^{(3)}\end{cases}
\end{aligned}
$$

For $f(x)=U_{2}^{\prime}(x)^{-1} d U_{2}^{\prime}(x) \quad\left(x \in S^{3}\right)$, we have

$$
\begin{aligned}
\frac{1}{24 \pi^{3}} \int_{S^{3}} \operatorname{tr} f^{3} & =\frac{1}{24 \pi^{2}}\left(\int_{U_{N}^{(3)}} \operatorname{tr}\left(U_{1 N}^{-1} d U_{1 N}\right)^{3}+\int_{U_{S}(3)} \operatorname{tr}\left(U_{1 S}^{-1} d U_{D}\right)^{3}\right) \\
& =1+1=2
\end{aligned}
$$

Repeating, we find for $f(x)=U_{n}^{-1} d u_{n}$:

$$
-\frac{1}{8 \pi^{2}} \int_{S^{4}} \operatorname{tr}{7^{2}}^{2}=\frac{1}{24 \pi^{2}} \int_{S^{3}} \operatorname{tr} d^{3}=n
$$

